Developing an Industry Job Simulation Program for Graduate and Postdoctoral Trainees in Life Sciences


  • Katelyn Kozma University of Toronto, The Hospital for Sick Children
  • Anne Meyer-Miner University of Toronto, The Hospital for Sick Children
  • Jonathan Chio University of Toronto, University Health Network
  • Stefanie Mak University of British Columbia
  • Ahmed El-Boraie University of Toronto, Centre for Addition and Mental Health
  • David Sealey University of Toronto



experiential learning, job simulation, talent development, non-academic careers, life sciences, mentorship, coaching


In the life sciences, many graduate students and postdoctoral fellows find it challenging to enter the non-academic workforce after completing their programs. Through experiential learning, trainees can develop the knowledge, technical skills, soft skills, and project portfolio that employers value, and compete effectively in the job market. In this article, we share design considerations for developing a job simulation program based on our experience over five years with the Industry Team Case Study program at the University of Toronto. In this program, which is focused on the biopharmaceutical sector, trainees identify a business or policy challenge, conduct in-depth research, develop a solution to address the problem, and present their findings to industry professionals. For mentorship and coaching, trainees are matched with industry professionals. This article covers four areas of program development: starting the program, recruiting advisors and trainees, designing the program and project framework, and evaluating program effectiveness. Academic institutions and student organizations can use this information to start their own job simulation programs focused on their employment sector of interest. Employers can participate in these programs to develop and scout talent.


Archer-Kuhn, B., & Rancourt, D. (2019). How universities can really help PhD grads get jobs | University Affairs.

BioTalentCanada. (2020). The Talent Differential The case for work-integrated learning in the bio-economy.

Brandt, P. D., Varvayanis, S., Baas, T., Bolgioni, A. F., Alder, J., Petrie, K. A., Dominguez, I., Brown, A. M., Stayart, C. A., Singh, H., Wart, V., Chow, C. S., Mathur, A., Schreiber, B. M., Fruman, D. A., Bowden, B., Holmquist, C. E., Arneman, D., Hall, J. D., … Layton, R. L. (2020). Measuring effects of trainee professional development on research productivity: A cross-institutional meta-analysis. BioRxiv.

Council of Canadian Acadmies. (2021). Degrees of Success, Ottawa, Ontario: The expert panel on the labour market transitionof PhD graduates. isbn: 978-1-926522-85-2 (electronic book), 978-1-926522-84-2 (book)

Craig, R., & Markowitz, T. (2017). The Skills Gap Is Actually An Awareness Gap -- And It’s Easier To Fix. Forbes.

Division of Student Life, University of Toronto. (2020). Centre for Community Partnerships.

Edge, J., & Munro, D. (2015). Inside and Outside the Academy. The Conference Board of Canada.

Fuhrmann, C. N., Halme, D. G., O’Sullivan, P. S., & Lindstaedt, B. (2011). Improving graduate education to support a branching career pipeline: Recommendations based on a survey of doctoral students in the basic biomedical sciences. CBE Life Sciences Education, 10(3), 239–249.

Her, S., Jacob, M. D., Wang, S., Xu, S., & Sealey, D. C. (2018). Non-academic employability of life science PhDs: the importance of training beyond the bench. BioRxiv.

Hitchcock, P., Mathur, A., Bennett, J., Cameron, P., Chow, C., Clifford, P., Duvoisin, R., Feig, A., Finneran, K., Klotz, D. M., McGee, R., O’Riordan, M., Pfund, C., Pickett, C., Schwartz, N., Street, N. E., Watkins, E., Wiest, J., & Engelke, D. (2017). The future of graduate and postdoctoral training in the biosciences. ELife, 6, 1–7.

Langin, K. (2019). Private sector nears rank of top Ph.D. Employer. Science, 363(6432), 1135.

Lenzi, R. N., Korn, S. J., Wallace, M., Desmond, N. L., & Labosky, P. A. (2020). The NIH “BEST” programs: Institutional programs, the program evaluation, and early data. FASEB Journal, 34(3), 3570–3582.

Meyers, F. J., Mathur, A., Fuhrmann, C. N., O’Brien, T. C., Wefes, I., Labosky, P. A., Duncan, D. S., August, A., Feig, A., Gould, K. L., Friedlander, M. J., Schaffer, C. B., Van Wart, A., & Chalkley, R. (2016). The origin and implementation of the Broadening Experiences in Scientific Training programs: An NIH common fund initiative. FASEB Journal, 30(2), 507–514.

Mitacs. (2020). Mitacs.

Porter, S., Mol, L., Locher, J., & Johnston, M. (2017). UBC PhD Career Outcomes Graduates from 2005-2013. 1–44.

Reithmeier, R., O’Leary, L., Zhu, X., Dales, C., Abdulkarim, A., Aquil, A., Brouillard, L., Chang, S., Miller, S., Shi, W., Vu, N., & Zou, C. (2019). The 10,000 PhDs project at the University of Toronto: Using employment outcome data to inform graduate education. PLoS ONE, 14(1), 1–12.

Roach, M., & Sauermann, H. (2017). The declining interest in an academic career. PLoS ONE, 12(9), 1–23.

Schnoes, A. M., Caliendo, A., Morand, J., Dillinger, T., Naffziger-Hirsch, M., Moses, B., Gibeling, J. C., Yamamoto, K. R., Lindstaedt, B., McGee, R., & O’Brien, T. C. (2018). Internship Experiences Contribute to Confident Career Decision Making for Doctoral Students in the Life Sciences. CBE Life Sciences Education, 17(1), 1–14.

School of Graduate Studies, University of Toronto. (2020). Graduate Professional Skills Program Information Session.

Sealey, D., Yung, A.,Rinchon,C., Wehrle, C. (2020). Case studies give grad students a chance to tackle industry challenges. University Affairs.

Silva, E. A., Mejía, A. B., & Watkins, E. S. (2019). Where do our graduates go? A tool kit for tracking career outcomes of biomedical PhD students and postdoctoral scholars. CBE Life Sciences Education, 18(4), 1–6.

Sinche, M., Layton, R. L., Brandt, P. D., O’Connell, A. B., Hall, J. D., Freeman, A. M., Harrell, J. R., Cook, J. G., & Brennwald, P. J. (2017). An evidence-based evaluation of transferrable skills and job satisfaction for science PhDs. PLoS ONE, 12(9), 1–16.

Tomasson Goodwin, J., Goh, J., Verkoeyen, S., & Lithgow, K. (2019). Can students be taught to articulate employability skills? Education and Training, 61(4), 445–460.

University of Alberta. (2020). Career Mentoring Program.

University of Toronto. (2020). Graduate and Life Sciences Education.

Wart, A. Van, O’brien, T. C., Varvayanis, S., Alder, J., Greenier, J., Layton, R. L., Stayart, C. A., Wefes, I., & Brady, A. E. (2020). Applying experiential learning to career development training for biomedical graduate students and postdocs: Perspectives on program development and design. CBE Life Sciences Education, 19(3), 1–12.

Yung, A., Rinchon, C., Wehrle, C., Sealey, D. (2019). Getting hired in industry – life science graduate students use case studies to get noticed by employers. OSF Preprints.



How to Cite

Kozma, K. ., Meyer-Miner, A. ., Chio, J. ., Mak, S., El-Boraie, A., & Sealey, D. (2021). Developing an Industry Job Simulation Program for Graduate and Postdoctoral Trainees in Life Sciences. Canadian Journal of Career Development, 20(2), 84–93.



Practitioners & Community Best Practices